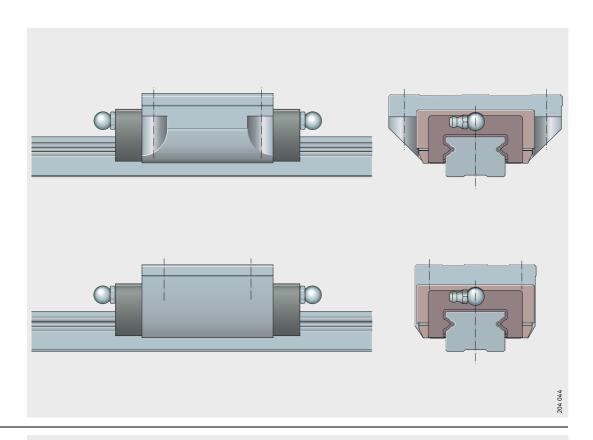


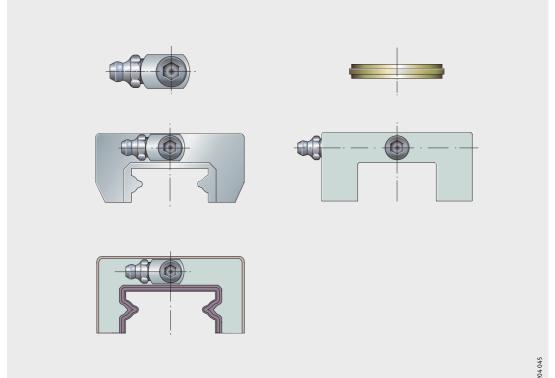


vollkugelig Zubehör



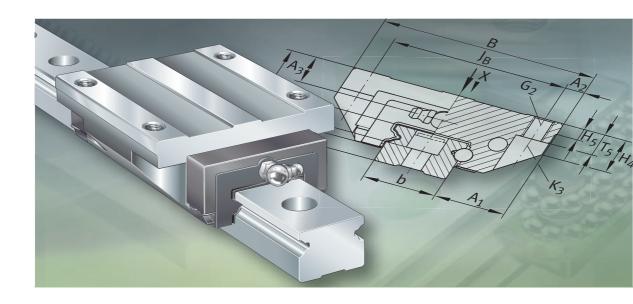
| vollkugelig | <br>41 | 4 |
|-------------|--------|---|
|             |        |   |


Diese Kugelumlaufeinheiten haben zwei Kugelreihen, die im Vierpunktkontakt zu den Laufbahnen stehen. Sie komplettieren damit das Programm der Kugelumlaufeinheiten nach unten.


Da die Führungen weniger tragfähig und steif sind, als die anderen INA-Profilschienenführungen auf Kugelbasis, werden sie bevorzugt eingesetzt, wenn geringere Anforderungen an die Belastbarkeit und Steifigkeit der Führung gestellt sind.

Mit den zweireihigen Einheiten lassen sich so sehr wirtschaftliche Längsführungen im unteren und mittleren Tragfähigkeitsbereich realisieren.

| Zubehör  | 1, 2 | О |
|----------|------|---|
| Lubelloi | 42   | Ю |


Es gibt Messing-Verschlusskappen für die Führungsschienen sowie umfangreiche Dichtungs- und Schmierungselemente.

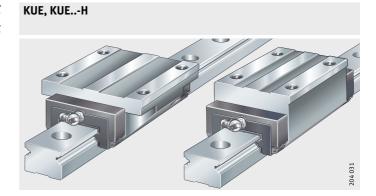











vollkugelig

|                     |                                                      | Seite |
|---------------------|------------------------------------------------------|-------|
| Produktübersicht    | Zweireihige Kugelumlaufeinheiten                     | 416   |
| Merkmale            | Belastbarkeit                                        | 417   |
|                     | Beschleunigung und Geschwindigkeit                   | 417   |
|                     | Führungswagen                                        | 418   |
|                     | Führungsschienen                                     | 418   |
|                     | Abdichtung                                           | 418   |
|                     | Schmierung                                           | 418   |
|                     | Betriebstemperatur                                   | 419   |
|                     | Standardzubehör                                      | 419   |
|                     | Rostgeschützte Ausführung                            | 419   |
|                     | Nachsetzzeichen                                      | 419   |
| Konstruktions- und  | Vorspannung                                          | 420   |
| Sicherheitshinweise | Reibung                                              | 420   |
|                     | Bohrbilder der Führungsschienen                      | 421   |
|                     | Anforderungen an die Umgebungskonstruktion           | 422   |
| Genauigkeit         | Genauigkeitsklassen                                  | 425   |
|                     | Positions- und Längentoleranzen der Führungsschienen | 427   |
| Bestellbeispiel,    | Führungswagen, Schiene mit symmetrischem Bohrbild    | 428   |
| Bestellbezeichnung  | Schiene mit unsymmetrischem Bohrbild                 | 429   |
| Maßtabellen         | Kugelumlaufeinheiten, Standard-Wagen                 | 430   |
|                     | Kugelumlaufeinheiten, H-Wagen                        | 434   |

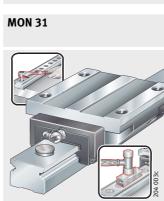


## Produktübersicht Zweireihige Kugelumlaufeinheiten

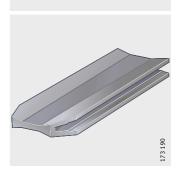
vollkugelig für Öl- und Fettschmierung



Führungsschiene Standard




Standardzubehör **Kunststoff-Verschlusskappe** Schutz- und Montageschiene




KA..-TN

Montageanleitung



MKD



### Merkmale

Kugelumlaufeinheiten KUE sind vorgespannt.

Sie werden in Anwendungen mit langen, unbegrenzten Hüben, mittleren Belastungen, geringer Steifigkeit und geringer Reibung eingesetzt.

Eine Führung besteht aus mindestens einem Führungswagen mit vollkugeligem Laufsystem, einer Führungsschiene und Verschlusskappen aus Kunststoff.

Die Einheiten sind getrennt als Führungswagen KWE und Führungsschiene TKD oder als Einheit KUE bestellbar. Bei einer Einheit sind auf jeder Führungsschiene ein oder mehrere Führungswagen montiert.

### **Belastbarkeit**

Die Kugelumlaufeinheiten haben zwei Kugelreihen, die im Druckwinkel von 45° zu den Laufbahnen stehen. Sie sind aus allen Richtungen – außer in Bewegungsrichtung – belastbar und nehmen Momente um alle Achsen auf, *Bild* 1.

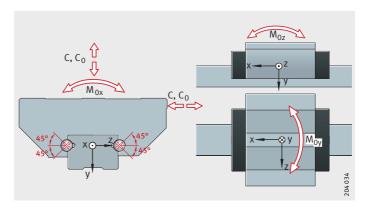



Bild 1
Belastbarkeit und Druckwinkel

### Beschleunigung und Geschwindigkeit Anwendungsgrenzen

Die dynamischen Werte zeigt die Tabelle.

| Kurzzeichen | Beschleunigung<br>bis | Geschwindigkeit<br>bis |
|-------------|-----------------------|------------------------|
|             | $m/s^2$               | m/min                  |
| KUE (-H)    | 150                   | 180                    |



### Führungswagen

Der Tragkörper der Führungswagen ist aus gehärtetem Stahl und allseitig geschliffen, die Wälzkörper-Laufbahnen sind feinstgeschliffen. Geschlossene Kanäle mit Umlenkungen aus Kunststoff führen die Kugeln zurück.

Zur Vergrößerung des Fettvolumens haben die Wagen Schmierstoffreservoire.

#### Führungsschienen

Die Führungsschienen sind aus gehärtetem Stahl und allseitig geschliffen, die Laufbahnen für die Wälzkörper feinstgeschliffen.

### Von oben zu befestigen

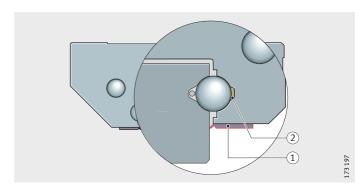
Führungsschienen TKD sind von oben zu befestigen. Die Durchgangsbohrungen haben Senkungen für die Befestigungsschrauben.

#### Zusammengesetzte Schienen

Wenn die gewünschte Schienenlänge l<sub>max</sub> den Wert nach Maßtabellen überschreitet, dann werden die Führungsschienen mehrteilig geliefert; siehe Seite 422.

### **Abdichtung**

Standard-Längsdichtleisten und elastische Abstreifer an den Stirnseiten sorgen für die sichere Abdichtung der Führungswagen, *Bild 2.* Diese Dichtelemente schützen das Wälzsystem auch bei kritischen Umgebungsbedingungen vor Verschmutzung. Zusätzliche Abdichtvarianten siehe Zubehör, Seiten 442 bis 443.




Bei außerordentlicher Schmutzbelastung bitte rückfragen!

### Schmierung

Die Kugelumlaufeinheiten eignen sich für Öl- und Fettschmierung. Bei Fettschmierung sind sie durch das Schmierstoffreservoir für die meisten Anwendungen wartungsfrei, *Bild 2*.

Geschmiert wird durch stirnseitige Schmiernippel im Kopfstück.



- 1 Standard-Dichtleisten
- ② Schmierstoffreservoir

Bild 2 Dichtleisten und Schmierstoffreservoir

### Betriebstemperatur

Kugelumlaufeinheiten KUE können bei Betriebstemperaturen von −10 °C bis +100 °C eingesetzt werden.

### Standardzubehör Kunststoff-Schutzschiene

Die Schutzschiene verhindert Schäden am Wälzkörpersatz, wenn der Führungswagen von der Führungsschiene getrennt wird. Die Wagen werden immer direkt von der Führungsschiene auf die Schutzschiene geschoben und bleiben dort bis zur Wiedermontage.

### Kunststoff-Verschlusskappen

Die Verschlusskappen verschließen die Senkungen der Bohrungen in den Führungsschienen bündig mit der Schienenoberfläche.
Optional sind auch Verschlusskappen aus Messing lieferbar, siehe Zubehör, Seite 441.

### Rostgeschützte Ausführung

Kugelumlaufeinheiten KUE gibt es auch rostgeschützt mit den Spezialbeschichtungen Corrotect $^{\circledR}$ , Protect A und Protect B.

## Nachsetzzeichen für Corrotect<sup>®</sup>-beschichtete Teile



Bei Anwendungen mit Corrotect® bitte rückfragen.

#### Nachsetzzeichen

Nachsetzzeichen der lieferbaren Ausführungen siehe Tabelle.

#### Lieferbare Ausführungen

| Nachsetz-<br>zeichen | Beschreibung  | Ausführung       |
|----------------------|---------------|------------------|
| -                    | Standardwagen | Standard         |
| L                    | langer Wagen  | Sonderausführung |
| Н                    | hoher Wagen   |                  |



## Konstruktions- und Sicherheitshinweise Vorspannung

Kugelumlaufeinheiten KUE gibt es in den Vorspannungsklassen VO und V1, siehe Tabelle Vorspannungsklassen.

Vorspannungsklassen

| Vorspannungs-<br>klasse | Vorspannungs-<br>einstellung         | Anwendungshinweis                                                                   |
|-------------------------|--------------------------------------|-------------------------------------------------------------------------------------|
| VO                      | sehr geringes Spiel<br>bis spielfrei | besonders leichtgängig<br>Momentenbelastung                                         |
| V1                      | spielfrei                            | mittlere Belastung<br>hohe Anforderungen<br>an die Steifigkeit<br>Momentenbelastung |

Einfluss der Vorspannung auf die Linearführung

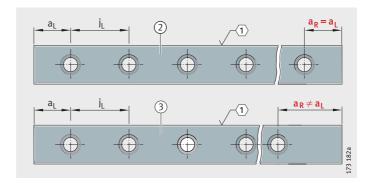
Mit der Vorspannung erhöht sich die Steifigkeit.

Die Vorspannung beeinflusst auch den Verschiebewiderstand

und die Gebrauchsdauer der Linearführung.

Reibung

Der Reibungskoeffizient hängt vom Verhältnis C/P ab, siehe Tabelle.


Reibungskoeffizient

| Belastung | Reibungskoeffizient |
|-----------|---------------------|
| C/P       | µ <sub>KUE</sub>    |
| 4 bis 20  | 0,002 bis 0,004     |

## **Bohrbilder** der Führungsschienen

Ohne besondere Angabe haben die Führungsschienen ein symmetrisches Bohrbild, Bild 3.

Auf Wunsch ist auch ein unsymmetrisches Bohrbild möglich. Dabei muss  $a_L \ge a_{L \min}$  und  $a_R \ge a_{R \min}$  sein, *Bild 3*.



(1) Anschlagseite (2) Symmetrisches Bohrbild (3) Unsymmetrisches Bohrbild

Bild 3 Bohrbilder bei Schienen mit einer Bohrungsreihe

### Maximale Anzahl der Teilungen

Die Anzahl der Teilungen ist der abgerundete ganzzahlige Anteil von:

$$n = \frac{l - 2 \cdot a_{L\,min}}{j_L}$$

Für die Abstände a<sub>L</sub> und a<sub>R</sub> gilt allgemein:

$$a_L + a_R = l - n \cdot j_L$$

Bei Führungsschienen mit symmetrischem Bohrbild gilt:

$$a_{L} = a_{R} = \frac{1}{2} \cdot \left( l - n \cdot j_{L} \right)$$

Anzahl der Bohrungen:

$$x=n+1$$

Abstand Schienenanfang und Schienenende zur nächsten Bohrung

 ${\bf a_{L\,min}}$ ,  ${\bf a_{R\,min}}$  mm Mindestwerte für  ${\bf a_{L}}$ ,  ${\bf a_{R}}$  nach Maßtabellen

mm

Schienenlänge

Maximal mögliche Anzahl der Teilungen

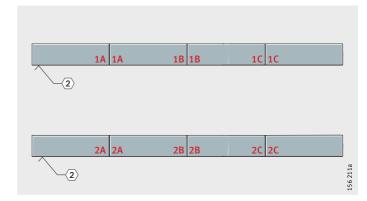
mm

Abstand der Bohrungen zueinander

Anzahl der Bohrungen.



Bei Nichtbeachtung der Minimalwerte für a<sub>1</sub> und a<sub>R</sub> können die Senkbohrungen angeschnitten werden!




### Mehrteilige Führungsschienen

Ist die geforderte Länge der Schienen größer als  $I_{max}$  nach Maßtabellen, dann werden diese Schienen bis zu ihrer Gesamtlänge aus Teilschienen zusammengesetzt. Die Teile sind aufeinander abgestimmt und gekennzeichnet, *Bild 4*.

② Beschriftung
Teilschienen:
1A, 1A
1B, 1B
1C, 1C
2A, 2A
2B, 2B

Bild 4 Kennzeichnung zusammengesetzter Schienen



# Anforderungen an die Umgebungskonstruktion

Die Ablaufgenauigkeit hängt im wesentlichen ab von der Geradheit, Genauigkeit und Steifigkeit der Pass- und Montageflächen.

Die Geradheit des Systems stellt sich erst ein, wenn die Schiene gegen die Bezugsfläche gepresst wird.

Bei hohen Anforderungen an die Ablaufgenauigkeit, weichen Unterkonstruktionen oder beweglichen Schienen bitte rückfragen.

## Form- und Lagegenauigkeit der Anschlussflächen

Je genauer und leichtgängiger die Führung sein soll, desto stärker muss auf die Form- und Lagegenauigkeit der Anschlussflächen geachtet werden.



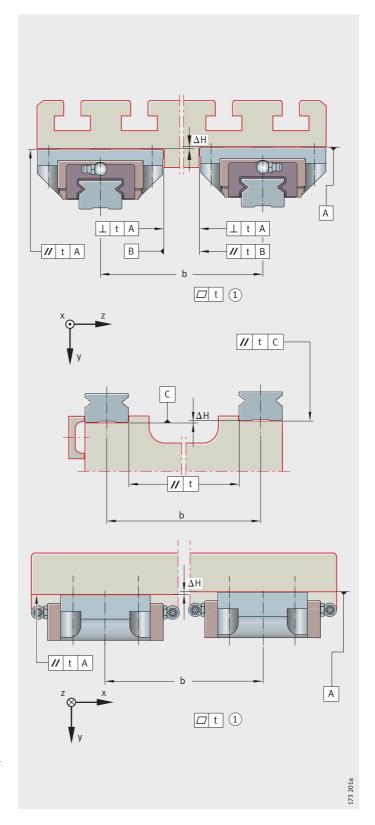
Toleranzen einhalten nach *Bild 5*, Seite 423 und Tabelle Werte für Parallelitätstoleranzen t, Seite 424!

Flächen schleifen oder feinfräsen – Mittenrauwert  $R_a 1,6$  anstreben! Abweichungen von den angegebenen Toleranzen verschlechtern die Gesamtgenauigkeit, verändern die Vorspannung und verringern die Gebrauchsdauer der Führung!

#### Höhenunterschied $\Delta H$

Für  $\Delta H$  sind Werte nach folgender Gleichung zulässig. Bei größeren Abweichungen bitte rückfragen.

$$\Delta_{\mathsf{H}} = \mathsf{0,2} \cdot \mathsf{b}$$


 $\Delta \mathsf{H}$ 

μm

Höchste zulässige Abweichung von der theoretisch genauen Lage, Bild 5. Seite 423

) mn

Mittenabstände der Führungselemente.





① Nicht konvex (für alle Bearbeitungsflächen)

Bild 5 Toleranzen der Anschlussflächen und Parallelität der montierten Führungsschienen

Parallelität der montierten Führungsschienen

Für parallel angeordnete Führungsschienen gilt die Parallelität t nach *Bild 5*, Seite 423 und Tabelle.

Werden die Höchstwerte genutzt, kann der Verschiebewiderstand steigen. Bei größeren Toleranzen bitte rückfragen.

Werte für Parallelitätstoleranzen t

| Führungsschiene | Vorspannungsklasse    |    |  |
|-----------------|-----------------------|----|--|
| Kurzzeichen     | V0                    | V1 |  |
|                 | Parallelitätstoleranz |    |  |
|                 | t                     | t  |  |
|                 | μm                    | μm |  |
| TKD15           | 13                    | 10 |  |
| TKD20           | 18                    | 12 |  |
| TKD25           | 22                    | 14 |  |
| TKD30           | 26                    | 17 |  |
| TKD35           | 30                    | 20 |  |

Anschlaghöhen und Eckenradien

Die Anschlaghöhen und Eckenradien gestalten nach Tabelle und Bild 6.

Anschlaghöhen, Eckenradien

| Zweireihige<br>Kugelumlaufeinheit<br>Kurzzeichen | h <sub>1</sub> | h <sub>2</sub><br>max.<br>mm | r <sub>1</sub><br>max.<br>mm | r <sub>2</sub><br>max.<br>mm |
|--------------------------------------------------|----------------|------------------------------|------------------------------|------------------------------|
| KUE15 (-H)                                       | 4,5            | 3,5                          | 1                            | 0,5                          |
| KUE20 (-H)                                       | 5              | 4                            | 1                            | 0,5                          |
| KUE25 (-H)                                       | 5              | 4,5                          | 1                            | 0,8                          |
| KUE30 (-H)                                       | 6              | 5                            | 1                            | 0,8                          |
| KUE35 (-H)                                       | 6,5            | 6                            | 1                            | 0,8                          |

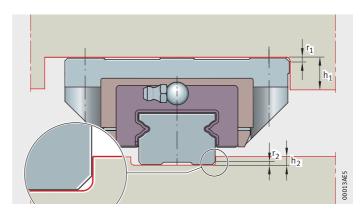
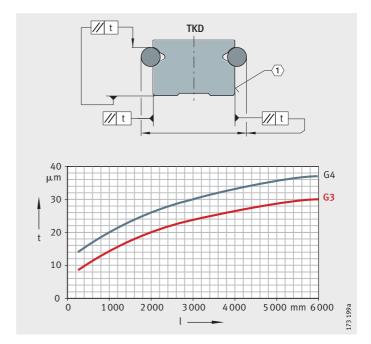




Bild 6
Anschlaghöhen und Eckenradien

## **Genauigkeit** Genauigkeitsklassen

Zweireihige Kugelumlaufeinheiten gibt es in den Genauigkeitsklassen G3 und G4, *Bild 7*. Standard ist die Klasse G3.



t = Parallelitätstoleranz bei Differenzmessung l = Gesamt-Schienenlänge \(\frac{1}{2}\) Anschlagseite

Bild 7 Genauigkeitsklassen und Parallelitätstoleranzen der Führungsschienen

## Parallelität der Laufbahnen zu den Anschlagflächen

Die Parallelitätstoleranzen der Führungsschienen zeigt *Bild 7*. Bei Corrotect<sup>®</sup>-beschichteten Systemen können gegenüber den unbeschichteten Einheiten Toleranz-Abweichungen auftreten.



#### Toleranzen

Toleranzen siehe Tabelle und Bild 8.

Die Toleranzen sind arithmetische Mittelwerte. Sie beziehen sich auf den Mittelpunkt der Anschraub- oder Anschlagflächen am Führungswagen.

Die Maße H und A<sub>1</sub>(Tabelle Toleranzen der Genauigkeitsklassen) bleiben immer innerhalb der Toleranz, unabhängig davon, an welcher Stelle der Schiene der Wagen steht.

## Toleranzen der Genauigkeitsklassen

| Toleranz                          |                | Genauigkeit      |     |  |
|-----------------------------------|----------------|------------------|-----|--|
|                                   |                | G3 <sup>1)</sup> | G4  |  |
|                                   |                | μm               | μm  |  |
| Toleranz für die Höhe             | Н              | ±25              | ±80 |  |
| Höhenunterschied <sup>2)</sup>    | $\Delta H$     | 15               | 20  |  |
| Toleranz für den Abstand          | A <sub>1</sub> | ±20              | ±80 |  |
| Abstandsunterschied <sup>2)</sup> | $\Delta A_1$   | 22               | 30  |  |

<sup>1)</sup> Standard-Genauigkeitsklasse.

## Corrotect®-beschichtete Einheiten

Bei diesen Einheiten müssen die Werte der entsprechenden Genauigkeitsklasse um die Werte von RRF oder RRFT erhöht werden; Werte siehe Tabelle.

## Toleranzen für beschichtete Teile

| Toleranz                                       |                | Corrot<br>besch   |                    | Protect A-<br>beschichtet | Protect B-<br>beschichtet |
|------------------------------------------------|----------------|-------------------|--------------------|---------------------------|---------------------------|
|                                                |                | RRF <sup>1)</sup> | RRFT <sup>2)</sup> | KD                        | KDC                       |
|                                                |                | μm                | μm                 | μm                        | μm                        |
| Toleranz für die Höhe                          | Н              | +6                | +3                 | +6                        | +6                        |
| Höhenunterschied <sup>3)</sup>                 | $\Delta H$     | +3                | 0                  | +3                        | +3                        |
| Toleranz für den Abstand                       | A <sub>1</sub> | +3                | +3                 | +3                        | +3                        |
| Abstandsunterschied <sup>3)</sup> $\Delta A_1$ |                | +3                | 0                  | +3                        | +3                        |

<sup>1)</sup> Toleranzfeldverschiebung (Schiene und Wagen beschichtet).

<sup>3)</sup> Unterschied zwischen mehreren Führungswagen auf einer Führungsschiene, gemessen an der gleichen Stelle der Schiene.

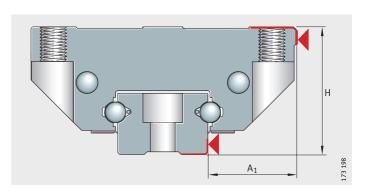



Bild 8
Bezugsmaße für die Genauigkeit

<sup>2)</sup> Unterschied zwischen mehreren Führungswagen auf einer Führungsschiene, gemessen an der gleichen Stelle der Schiene.

<sup>&</sup>lt;sup>2)</sup> Toleranzfeldverschiebung (nur Schiene beschichtet).

## Positionsund Längentoleranzen der Führungsschienen

Die Positions- und Längentoleranzen zeigen *Bild 9* und Tabelle Längentoleranzen der Führungsschienen. Das Bohrbild entspricht DIN ISO 1101.

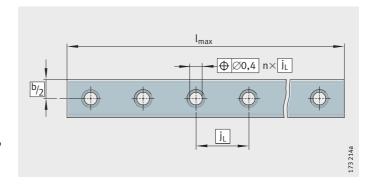



Bild 9
Positions- und Längentoleranzen
der Führungsschienen

## Längentoleranzen der Führungsschienen

| Toleranzen                 |                             |                                      |                            |  |  |  |
|----------------------------|-----------------------------|--------------------------------------|----------------------------|--|--|--|
| der Führung<br>abhängig vo | sschiene,<br>on der Länge l | bei mehrteiligen<br>Führungsschienen |                            |  |  |  |
| Schienenlänge<br>mm        |                             |                                      | mm                         |  |  |  |
| ≦1 000                     | >1 000<br><3 000            |                                      |                            |  |  |  |
| -1                         | -1,5                        | ±0,1%<br>der Schienenlänge           | ±3<br>über die Gesamtlänge |  |  |  |

 $<sup>\</sup>overline{\text{Länge l}_{\text{max}}}$  siehe Maßtabellen.

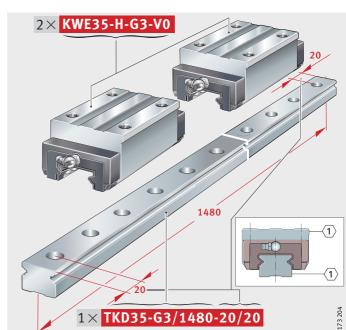
## Teilstücke bei gestoßenen Führungsschienen

| Schienenlänge <sup>1)</sup> | maximal zulässige Teilstücke |
|-----------------------------|------------------------------|
| mm                          |                              |
| <3000                       | 2                            |
| 3 000 – 4 000               | 3                            |
| 4 000 - 6 000               | 4                            |
| >6000                       | 4 + 1 Teilstück pro 1 500 mm |

<sup>1)</sup> Mindestlänge eines Teilstückes = 600 mm.



## Bestellbeispiel, Bestellbezeichnung Führungswagen, Schiene mit symmetrischem Bohrbild


Führungswagen Zwei Führungswagen

| für zweireihige Kugelumlaufeinheit | KWE |
|------------------------------------|-----|
| Größenkennziffer                   | 35  |
| Bauform des Führungswagens         | Н   |
| Genauigkeitsklasse                 | G3  |
| Vorspannung                        | V0  |

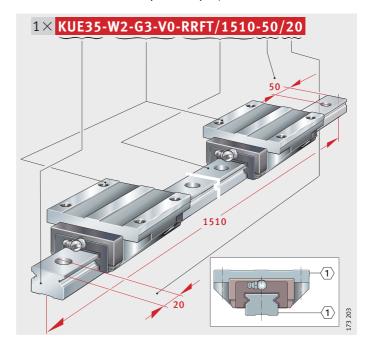
Bestellbezeichnung 2×KWE35-H-G3-V0, Bild 10

Führungsschiene Eine Führungsschiene für die Führungswagen TKD Größenkennziffer 35

Bestellbezeichnung 1×TKD35-G3/1480-20/20, Bild 10



 $\fbox{1} Anschlagseite$ 

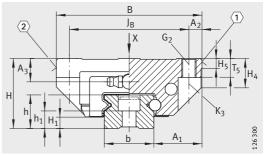

Bestellbeispiel, Bestellbezeichnung

# Schiene mit unsymmetrischem Bohrbild

Eine Kugelumlaufeinheit mit zwei Führungswagen pro Führungsschiene KUE Größenkennziffer 35 Führungswagen pro Einheit W2 Genauigkeitsklasse G3 Vorspannung V0 Führungsschiene Corrotect®-beschichtet RRFT Länge der Führungsschiene 1510 mm 50 mm  $a_L$ 20 mm  $a_R$ 

### Bestellbezeichnung

1×KUE35-W2-G3-V0-RRFT/1510-50/20, Bild 11




Anschlagseite

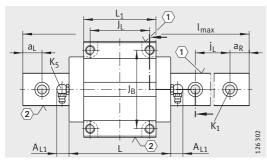
Bestellbeispiel, Bestellbezeichnung



Standard-Wagen



KUE (1), (2) 3)

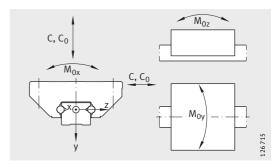

| <b>Maßtabelle</b> · Ab | Maßtabelle · Abmessungen in mm |    |        |               |                |                |                 |                |                |    |                |                                 |      |                 |
|------------------------|--------------------------------|----|--------|---------------|----------------|----------------|-----------------|----------------|----------------|----|----------------|---------------------------------|------|-----------------|
| Kurzzeichen            | Abmessungen                    |    | Anschl | Anschlussmaße |                |                |                 |                |                |    |                |                                 |      |                 |
|                        | $l_{max}^{1)}$                 | Н  | В      | L             | A <sub>1</sub> | J <sub>B</sub> | b               | A <sub>2</sub> | L <sub>1</sub> | JL | j <sub>L</sub> | a <sub>L</sub> , a <sub>R</sub> | 2)   | A <sub>L1</sub> |
|                        |                                |    |        |               |                |                |                 |                |                |    |                |                                 |      |                 |
|                        |                                |    |        |               |                |                | -0,004<br>-0,05 |                |                |    |                | min.                            | max. |                 |
| KUE15                  | 1 200                          | 24 | 47     | 54,5          | 16             | 38             | 15              | 4,5            | 38,7           | 30 | 60             | 20                              | 53   | 1,5             |
| KUE20                  | 1 980                          | 30 | 63     | 70,4          | 21,5           | 53             | 20              | 5              | 49,4           | 40 | 60             | 20                              | 53   | 14              |
| KUE25                  | 1 980                          | 36 | 70     | 80,5          | 23,5           | 57             | 23              | 6,5            | 56,5           | 45 | 60             | 20                              | 53   | 14              |
| KUE30                  | 2 000                          | 42 | 90     | 92,9          | 31             | 72             | 28              | 9              | 65,7           | 52 | 80             | 20                              | 71   | 14              |
| KUE35                  | 2 960                          | 48 | 100    | 106,1         | 33             | 82             | 34              | 9              | 75,4           | 62 | 80             | 20                              | 71   | 14              |

## Weitere Tabellenwerte siehe Seite 432 und Seite 433.

Maximale Länge einteiliger Führungsschienen. Zulässige Schienenteilstücke siehe Seite 427. Maximale einteilige Schienenlänge von 6 m auf Anfrage.

 $<sup>^{2)}</sup>$   $a_L$  und  $a_R$  sind von der Schienenlänge abhängig.

<sup>3) (1)</sup> Anschlagseite (2) Beschriftung



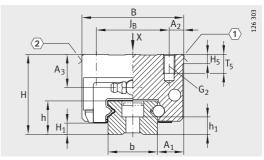

KUE  $\cdot$  Ansicht um 90° gedreht  $\textcircled{1}, \textcircled{2}^{3)}$ 

|  |                |                |                |                |                |      |                |                | Befestig | gungssch             | rauben         |                      |                |                      |
|--|----------------|----------------|----------------|----------------|----------------|------|----------------|----------------|----------|----------------------|----------------|----------------------|----------------|----------------------|
|  | H <sub>1</sub> | H <sub>5</sub> | A <sub>3</sub> | H <sub>4</sub> | T <sub>5</sub> | h    | h <sub>1</sub> | K <sub>5</sub> | $G_2$    |                      | K <sub>1</sub> |                      | K <sub>3</sub> |                      |
|  |                |                |                |                |                |      |                |                | DIN ISO  | 4762-1               | 2.9            |                      |                |                      |
|  |                |                |                |                |                |      |                |                |          | M <sub>A</sub><br>Nm |                | M <sub>A</sub><br>Nm |                | M <sub>A</sub><br>Nm |
|  | 4,8            | 4,5            | 4              | 7,5            | 7              | 15   | 8,2            | NIP-A1         | M5       | 5,8                  | M4             | 5                    | M4             | 5                    |
|  | 5              | 5              | 6,5            | 11,6           | 10             | 16,5 | 8,8            | NIP-KE-M6      | M6       | 10                   | M5             | 10                   | M5             | 10                   |
|  | 6,5            | 5              | 10             | 11,6           | 10             | 18   | 9,2            | NIP-KE-M6      | M8       | 24                   | M6             | 17                   | M6             | 17                   |
|  | 7              | 6              | 13             | 14,6           | 10             | 21,5 | 10,5           | NIP-KE-M6      | M10      | 41                   | M8             | 41                   | M8             | 41                   |
|  | 8              | 6,5            | 16             | 20,1           | 13             | 23   | 12             | NIP-KE-M6      | M10      | 41                   | M8             | 41                   | M8             | 41                   |



Standard-Wagen




Lastrichtungen

| Maßtabelle (Fort | Maßtabelle (Fortsetzung) · Abmessungen in mm |               |             |                 |                 |  |  |  |  |  |
|------------------|----------------------------------------------|---------------|-------------|-----------------|-----------------|--|--|--|--|--|
| Kurzzeichen      | Führungswagen                                | Führungswagen |             | Führungsschiene |                 |  |  |  |  |  |
|                  | Kurzzeichen                                  | Masse         | Kurzzeichen | Masse           | Verschlusskappe |  |  |  |  |  |
|                  |                                              | m             |             | m               |                 |  |  |  |  |  |
|                  |                                              | ≈kg           |             | ≈kg/m           |                 |  |  |  |  |  |
| KUE15            | KWE15                                        | 0,17          | TKD15       | 1,5             | KA08-TN         |  |  |  |  |  |
| KUE20            | KWE20                                        | 0,45          | TKD20       | 2,2             | KA10-TN         |  |  |  |  |  |
| KUE25            | KWE25                                        | 0,65          | TKD25       | 2,8             | KA11-TN         |  |  |  |  |  |
| KUE30            | KWE30                                        | 1,2           | TKD30       | 4,2             | KA15-TN         |  |  |  |  |  |
| KUE35            | KWE35                                        | 1,7           | TKD35       | 5,6             | KA15-TN         |  |  |  |  |  |

| Tragfäl | Tragfähigkeit |       |                 |                 |                 |  |  |  |  |  |
|---------|---------------|-------|-----------------|-----------------|-----------------|--|--|--|--|--|
| Tragza  | hlen          |       | Momente         |                 |                 |  |  |  |  |  |
| С       | C             | 0     | M <sub>0x</sub> | M <sub>Oy</sub> | M <sub>Oz</sub> |  |  |  |  |  |
| N       | N             |       | Nm              | Nm              | Nm              |  |  |  |  |  |
| 6 500   | ) 9           | 9 200 | 73              | 56              | 56              |  |  |  |  |  |
| 13 300  | 18            | 8 000 | 190             | 154             | 154             |  |  |  |  |  |
| 16 200  | ) 20          | 0 900 | 253             | 185             | 185             |  |  |  |  |  |
| 22 500  | 25            | 9700  | 437             | 335             | 335             |  |  |  |  |  |
| 28 000  | 3             | 7 000 | 658             | 450             | 450             |  |  |  |  |  |

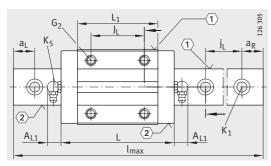


H-Wagen



KUE..-H (1), (2) <sup>4)</sup>

| $\textbf{Maßtabelle} \cdot A$ | Maßtabelle ⋅ Abmessungen in mm |    |        |               |                |                |                 |                |                |       |                |                                 |      |                 |
|-------------------------------|--------------------------------|----|--------|---------------|----------------|----------------|-----------------|----------------|----------------|-------|----------------|---------------------------------|------|-----------------|
| Kurzzeichen                   | Abmessungen                    |    | Anschl | Anschlussmaße |                |                |                 |                |                |       |                |                                 |      |                 |
|                               | l <sub>max</sub> 1)            | Н  | В      | L             | A <sub>1</sub> | J <sub>B</sub> | b               | A <sub>2</sub> | L <sub>1</sub> | $J_L$ | j <sub>L</sub> | a <sub>L</sub> , a <sub>R</sub> | 2)   | A <sub>L1</sub> |
|                               |                                |    |        |               |                |                |                 |                |                |       |                |                                 |      |                 |
|                               |                                |    |        |               |                |                | -0,004<br>-0,05 |                |                |       |                | min.                            | max. |                 |
| KUE15-H                       | 1 200                          | 28 | 34     | 54,5          | 9,5            | 26             | 15              | 4              | 38,7           | 26    | 60             | 20                              | 53   | 1,5             |
| KUE20-H                       | 1 980                          | 30 | 44     | 70,4          | 12             | 32             | 20              | 6              | 49,4           | 36    | 60             | 20                              | 53   | 14              |
| KUE25-H                       | 1 980                          | 40 | 48     | 80,5          | 12,5           | 35             | 23              | 6,5            | 56,5           | 35    | 60             | 20                              | 53   | 14              |
| KUE30-H                       | 2 000                          | 45 | 60     | 92,9          | 16             | 40             | 28              | 10             | 65,7           | 40    | 80             | 20                              | 71   | 14              |
| KUE35-H                       | 2 9 6 0                        | 55 | 70     | 106,1         | 18             | 50             | 34              | 10             | 75,4           | 50    | 80             | 20                              | 71   | 14              |

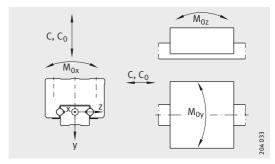

### Weitere Tabellenwerte siehe Seite 436 und Seite 437.

Maximale Länge einteiliger Führungsschienen. Zulässige Schienenteilstücke siehe Seite 427. Maximale einteilige Schienenlänge von 6 m auf Anfrage.

 $<sup>^{2)}</sup>$   $a_L$  und  $a_R$  sind von der Schienenlänge abhängig.

<sup>3)</sup> Maximale Einschraubtiefe.

<sup>4) (1)</sup> Anschlagseite (2) Beschriftung



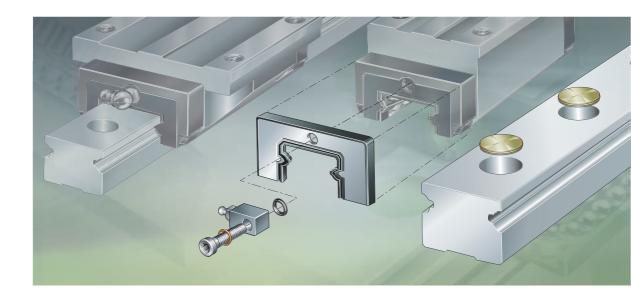

KUE...-H · Ansicht um 90° gedreht  $\stackrel{\textstyle (1)}{}$ ,  $\stackrel{\textstyle (2)}{}$ 

|   |                |                |                |                              |      |                |                |           | Befestigungsschrauben |                |                      |  |  |
|---|----------------|----------------|----------------|------------------------------|------|----------------|----------------|-----------|-----------------------|----------------|----------------------|--|--|
|   | H <sub>1</sub> | H <sub>5</sub> | A <sub>3</sub> | T <sub>5</sub> <sup>3)</sup> | h    | h <sub>1</sub> | K <sub>5</sub> | $G_2$     |                       | K <sub>1</sub> |                      |  |  |
|   |                |                |                |                              |      |                |                | DIN ISO 4 | 762-12.9              |                |                      |  |  |
|   |                |                |                |                              |      |                |                |           | M <sub>A</sub><br>Nm  |                | M <sub>A</sub><br>Nm |  |  |
|   | 4,8            | 4,5            | 8              | 5                            | 15   | 8,2            | NIP-A1         | M4        | 5                     | M4             | 5                    |  |  |
|   | 5              | 5              | 6,5            | 5,5                          | 16,5 | 8,8            | NIP-KE-M6      | M5        | 10                    | M5             | 10                   |  |  |
|   | 6,5            | 5              | 14             | 8                            | 18   | 9,2            | NIP-KE-M6      | M6        | 17                    | M6             | 17                   |  |  |
|   | 7              | 6              | 16             | 10                           | 21,5 | 10,5           | NIP-KE-M6      | M8        | 41                    | M8             | 41                   |  |  |
| • | 8              | 6,5            | 23             | 12                           | 23   | 12             | NIP-KE-M6      | M8        | 41                    | M8             | 41                   |  |  |



H-Wagen




Lastrichtungen

| Maßtabelle (Fortsetzung) · Abmessungen in mm |               |               |             |                 |                 |  |  |  |  |
|----------------------------------------------|---------------|---------------|-------------|-----------------|-----------------|--|--|--|--|
| Kurzzeichen                                  | Führungswagen | Führungswagen |             | Führungsschiene |                 |  |  |  |  |
|                                              | Kurzzeichen   | Masse         | Kurzzeichen | Masse           | Verschlusskappe |  |  |  |  |
|                                              |               | m             |             | m               |                 |  |  |  |  |
|                                              |               | ≈kg           |             | ≈kg/m           |                 |  |  |  |  |
| KUE15-H                                      | KWE15-H       | 0,17          | TKD15       | 1,5             | KA08-TN         |  |  |  |  |
| KUE20-H                                      | KWE20-H       | 0,35          | TKD20       | 2,2             | KA10-TN         |  |  |  |  |
| KUE25-H                                      | KWE25-H       | 0,55          | TKD25       | 2,8             | KA11-TN         |  |  |  |  |
| KUE30-H                                      | KWE30-H       | 0,9           | TKD30       | 4,2             | KA15-TN         |  |  |  |  |
| KUE35-H                                      | KWE35-H       | 1,46          | TKD35       | 5,6             | KA15-TN         |  |  |  |  |

| Tragfähigkeit | Tragfähigkeit  |                 |                 |                 |  |  |  |  |  |  |
|---------------|----------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| Tragzahlen    |                | Momente         | Momente         |                 |  |  |  |  |  |  |
| С             | C <sub>0</sub> | M <sub>Ox</sub> | M <sub>Oy</sub> | M <sub>0z</sub> |  |  |  |  |  |  |
| N             | N              | Nm              | Nm              | Nm              |  |  |  |  |  |  |
| 6 500         | 9 200          | 73              | 56              | 56              |  |  |  |  |  |  |
| 13 300        | 18 000         | 190             | 154             | 154             |  |  |  |  |  |  |
| 16 200        | 20 900         | 253             | 185             | 185             |  |  |  |  |  |  |
| 22 500        | 29700          | 437             | 335             | 335             |  |  |  |  |  |  |
| 28 000        | 37 000         | 658             | 450             | 450             |  |  |  |  |  |  |







# Zubehör

Verschlusskappen Dichtungs- und Schmierungselemente

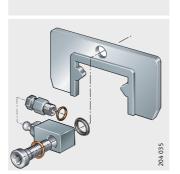
## Zubehör

|                                              |                                                             | Seite |
|----------------------------------------------|-------------------------------------------------------------|-------|
| Produktübersicht                             | Zubehör                                                     | 440   |
| Messing-Verschlusskappen                     |                                                             | 441   |
| Blechabstreifer                              | Kompletter Montagesatz  Bestellbeispiel, Bestellbezeichnung |       |
| Frontabstreifer                              | Abstreifer mit Einlippen-Dichtung                           |       |
| Schmieradapter<br>für Fett- und Ölschmierung | Ausführung des Schmieradapters                              | 444   |
| Schmieradapterplatte                         | Bestellbeispiel, Bestellbezeichnung                         |       |
| Maßtabellen                                  | BlechabstreiferAbstreiferSchmieradapterplatte               | 447   |

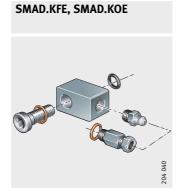


## Produktübersicht Zubehör

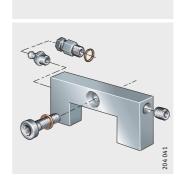
Verschlusskappe Messingkappe



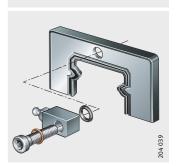

KA..-M


APLE

**BPLE** 


Schmierund Dichtungselemente Blechabstreifer Frontabstreifer




Schmieradapter für Fett- und Ölschmierung



Schmieradapterplatte



**ABE** 



## Zubehör

## Messing-Verschlusskappen

Verschlusskappen verschließen die Senkungen für die Befestigungsschrauben in den Führungsschienen. Dadurch entsteht eine bündige Schienenoberfläche. Messing-Verschlusskappen KA..-M eignen sich besonders, wenn heiße Späne anfallen und bei aggressiven Medien, *Bild* 1.



KA..-M

Bild 1
Messing-Verschlusskappe



### Zubehör

### Blechabstreifer

Blechabstreifer APLE werden an die Stirnseiten des Führungswagens geschraubt, *Bild 2*.

Sie schützen die Dichtlippen der Standard-Abstreifer vor grobem Schmutz und heißen Spänen. Zwischen Führungsschiene und Abstreifer bleibt ein schmaler Spalt.

#### APLE

① Blechabstreifer
 ② Schmieradapter
 ③ Befestigungsschraube
 ④ Schmiernippel
 ⑥ Zentralschmieranschluss

Bild 2 Blechabstreifer



### Kompletter Montagesatz

Die Abstreifer werden mit dem Schmieradapter SMAD.KFE und einer Befestigungsschraube geliefert. Dieser Schmieradapter lässt sich durch den Schmieradapter SMAD.KOE ersetzen; Schmieradapter siehe Seite 448.

Anstelle des Schmiernippels kann der Adapter auch mit einem Zentralschmieranschluss – Gewinde DIN 13  $M8\times1$  – ausgerüstet werden.

Der Blechabstreifer APLE ist nicht lieferbar für die Baugröße KUE15.

## Bestellbeispiel, Bestellbezeichnung Bestellbezeichnung

Gewünscht sind zwei Blechabstreifer für eine KUE25.

2×APLE25-FE

### **Frontabstreifer**

Die Frontabstreifer gibt es als Einlippen-Dichtung. Sie werden zum Schutz der dahinterliegenden Bauteile und des Wälzsystems an die Stirnseiten des Führungswagens geschraubt, *Bild 3.* Damit kann häufig auf zum Teil teure Abdicht-Maßnahmen an der Anschlusskonstruktion verzichtet werden.

Als Dichtungsträger wird eine Aluminium-Platte verwendet. Der Dichtungswerkstoff ist abriebfester NBR-Kunststoff (Nitril-Kautschuk). Es ist auch eine Dichtlippenvariante mit FPM (Fluor-Kautschuk) möglich.

# Abstreifer mit Einlippen-Dichtung

Diese Abstreifer gibt es mit den Dichtungs-Materialien NBR für feine Stäube und die meisten Kühl-Schmiermittel sowie mit FPM für besonders aggressive Kühl-Schmiermittel oder Laugen, *Bild 3*.

Sie eignen sich für Anwendungen mit stärkerem Verschmutzungsgrad und verlängern die Gebrauchsdauer der Führung gegenüber der Standardausrüstung auch bei schmutziger Umgebung. Lieferbar sind die Abstreifer ab der Baugröße KUSE25.

### Mit Schmieradapter

Ein Schmieradapter für Fett (SMAD.KFE) oder Öl (SMAD.KOE) wird je nach Bestellangabe mitgeliefert.



Vor der nachträglichen Montage der Abstreifer bitte rückfragen!

① Frontabstreifer ② Einlippen-Dichtung ABE..-NBR oder ABE..-FPM ③ Schmieradapter

> Bild 3 Frontabstreifer mit Einlippen-Dichtung

## Bestellbeispiel, Bestellbezeichnung Bestellbezeichnung

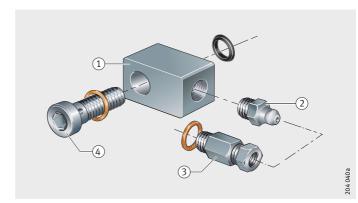
Zwei Frontabstreifer mit NBR-Einlippen-Dichtung für eine KUE35 mit Schmiernippel für Fett.

2×ABE.KWE35-NBR-FE



### Zubehör

# Schmieradapter für Fett- und Ölschmierung


Schmieradapter SMAD.KFE (für Fett) oder SMAD.KOE (für Öl) werden anstelle des Schmiernippels NIP-KG-M6 in das Kopfstück des Führungswagens geschraubt, *Bild 4*.

Die Schmieradapter gibt es nicht für die Baureihe KUE15.



① Schmieradapter
② Schmiernippel
③ Zentralschmieranschluss
④ Befestigungsschraube

Bild 4 Schmieradapter



# Ausführung des Schmieradapters

Die Ausführung des Adapters hängt vom Schmierverfahren ab, siehe Tabelle.

Schmieradapter

| Adapter<br>Kurzzeichen | Schmierverfahren | Ausführung                  |
|------------------------|------------------|-----------------------------|
| SMAD.KFE               | Fettschmierung   | mit Schmiernippel           |
| SMAD.KOE               | Ölschmierung     | mit Zentralschmieranschluss |

### Montage



Das maximale Anziehdrehmoment  $M_A$  für die Befestigungsschraube ist 1,5 Nm!

Schmieradapter nicht mit einem Moment belasten!

Bestellbeispiel, Bestellbezeichnung Ein Schmieradapter für eine KUE35 für Ölschmierung.

Bestellbezeichnung 1×SMAD.KWE35-OE

### **Schmieradapterplatte**

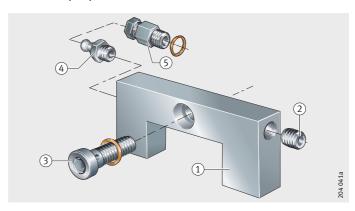
Schmieradapterplatten BPLE werden an das Kopfstück des Führungswagens geschraubt. Sie verlagern den Schmieranschluss zur Außenseite des Wagens.

Die Adapterplatten bestehen aus jeweils einem Aluminiumkörper, einer Verschlussschraube, einer Befestigungsschraube mit Dichtring, einem Schmiernippel nach DIN 71412-A M8 $\times$ 1 oder einem Zentralschmieranschluss mit Dichtring und Gewinde nach DIN 13 M8 $\times$ 1.



Bei allen hohen Führungswagen (-H) ragt der Schmiernippel seitlich etwa 9 mm über die Führungswagen hinaus!

Nicht benötigte Bohrung in der Adapterplatte mit Verschlussschraube verschließen!

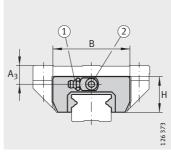

Schmieradapterplatten sind nicht lieferbar für die Baureihe KUE15.

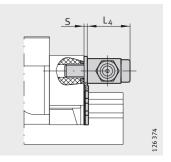
#### **BPLE**

① Aluminiumkörper ② Verschlussschraube ③ Befestigungsschraube mit Dichtring ④ Schmiernippel ⑤ Zentralschmieranschluss

> Bild 5 Schmieradapterplatte

Bestellbeispiel, Bestellbezeichnung Bestellbezeichnung





Eine Schmieradapterplatte für eine KUE35 mit Zentralschmieranschluss.

 $1 \times BPLE35-OE$ 



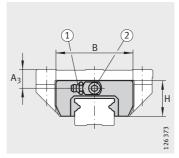
## Blechabstreifer

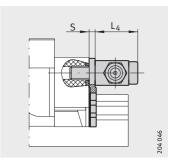




APLE (1), (2) <sup>2)</sup>

APLE


| Maßtabelle · Abmessungen in mm |                  |       |         |      |             |     |                |                    |
|--------------------------------|------------------|-------|---------|------|-------------|-----|----------------|--------------------|
| Kurzzeichen <sup>1)</sup>      |                  | Masse | Abmessu | ngen | passend zur |     |                |                    |
| für Fettschmierung             | für Ölschmierung | m     | В       | Н    | L4          | S   | A <sub>3</sub> | Kugelumlaufeinheit |
|                                |                  | ≈g    |         |      |             |     |                |                    |
| APLE20-FE                      | APLE20-OE        | 35    | 40      | 24   | 19          | 1,2 | 6,5            | KUE20              |
|                                |                  |       |         |      |             |     |                | KUE20-H            |
| APLE25-FE                      | APLE25-OE        | 39    | 44      | 25,3 | 19          | 1,2 | 10             | KUE25              |
|                                |                  |       |         |      |             |     | 14             | KUE25-H            |
| APLE30-FE                      | APLE30-OE        | 43    | 58      | 28   | 19          | 1,2 | 13             | KUE30              |
|                                |                  |       |         |      |             |     | 16             | KUE30-H            |
| APLE35-FE                      | APLE35-OE        | 47    | 66      | 30,5 | 19          | 1,2 | 16             | KUE35              |
|                                |                  |       |         |      |             |     | 23             | KUE35-H            |


Achtung! Bei der Montage ist auf einen gleichmäßigen Spalt zwischen der Schiene und dem Abstreifer zu achten!

<sup>1)</sup> APLE..-FE haben Schmiernippel APLE..-OE haben Öl-Anschlussstücke (ähnlich DIN 3871-A)

 $<sup>^{2)}</sup>$  ① Schmiernippel ② Anziehdrehmoment  $M_A$  der Befestigungsschrauben = 1,5 Nm

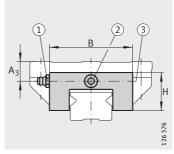
## **Abstreifer**

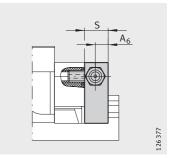




ABE.KWE (1), (2) <sup>2)</sup>

ABE.KWE


| Maßtabelle · Abmessungen in mm |                  |             |      |      |     |                |                |                    |
|--------------------------------|------------------|-------------|------|------|-----|----------------|----------------|--------------------|
| Kurzzeichen <sup>1)</sup>      | Masse            | Abmessungen |      |      |     |                | passend zur    |                    |
| für Fettschmierung             | für Ölschmierung | m           | В    | Н    | S   | A <sub>3</sub> | L <sub>4</sub> | Kugelumlaufeinheit |
|                                |                  | ≈g          |      |      |     |                |                |                    |
| ABE.KWE25-FE-NBR               | ABE.KWE25-OE-NBR | 37,4        | 45,7 | 25,4 | 4,5 | 10             | 19             | KUE25              |
| ABE.KWE25-FE-FPM               | ABE.KWE25-OE-FPM |             |      |      |     | 14             |                | KUE25-H            |
| ABE.KWE30-FE-NBR               | ABE.KWE30-OE-NBR | 41          | 57,4 | 27,9 | 4,5 | 13             | 19             | KUE30              |
| ABE.KWE30-FE-FPM               | ABE.KWE30-OE-FPM |             |      |      |     | 16             |                | KUE30-H            |
| ABE.KWE35-FE-NBR               | ABE.KWE35-OE-NBR | 44,4        | 67,3 | 30,9 | 4,5 | 16             | 19             | KUE35              |
| ABE.KWE35-FE-FPM               | ABE.KWE35-OE-FPM |             |      |      |     | 23             |                | KUE35-H            |


<sup>1)</sup> ABE.KWE..-FE haben Schmiernippel ABE.KWE..-OE haben Öl-Anschlussstücke (ähnlich DIN 3871-A).



 $<sup>^{2)}</sup>$  ① Schmiernippel ② Maximales Anziehdrehmoment  $M_{\rm A}$  der Befestigungsschraube = 1,5 Nm

## Schmieradapterplatte





1, 2, 3 2)

**BPLE** 

| Maßtabelle · Abmessungen in mm |                  |       |        |       |    |                |                |                    |  |
|--------------------------------|------------------|-------|--------|-------|----|----------------|----------------|--------------------|--|
| Kurzzeichen <sup>1)</sup>      |                  | Masse | Abmess | ungen |    | passend zur    |                |                    |  |
| für Fettschmierung             | für Ölschmierung | m     | В      | Н     | S  | A <sub>6</sub> | A <sub>3</sub> | Kugelumlaufeinheit |  |
|                                |                  | ≈g    |        |       |    |                |                |                    |  |
| BPLE20-FE                      | BPLE20-OE        | 25    | 42     | 23,5  | 12 | 6,5            | 6,5            | KUE20              |  |
|                                |                  |       |        |       |    |                |                | KUE20-H            |  |
| BPLE25-FE                      | BPLE25-OE        | 34    | 46,5   | 26    | 12 | 6,5            | 10             | KUE25              |  |
|                                |                  |       |        |       |    |                | 14             | KUE25-H            |  |
| BPLE30-FE                      | BPLE30-OE        | 44    | 58     | 28    | 12 | 6,5            | 13             | KUE30              |  |
|                                |                  |       |        |       |    |                | 16             | KUE30-H            |  |
| BPLE35-FE                      | BPLE35-OE        | 54    | 68     | 31    | 12 | 6,5            | 16             | KUE35              |  |
|                                |                  |       |        |       |    |                | 23             | KUE35-H            |  |

Achtung! Bei der Baureihe KUE...-H ragt der Schmiernippel oder der Ölanschluss seitlich etwa 9 mm über die Kontur des Führungswagens hinaus! Schmiernippel und Verschlussschraube können vertauscht werden!

- 1) BPLE..-FE haben Schmiernippel BPLE..-OE haben Öl-Anschlussstücke (ähnlich DIN 3871-A).
- 2) ① Schmiernippel ② Anziehdrehmoment M<sub>A</sub> der Befestigungsschrauben = 1,5 Nm ③ Verschlussschraube M8×1